International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 4 Number 6 (2015) pp. 379-387 http://www.ijcmas.com

Original Research Article

Detection of *flaA* Virulence Genes *Campylobacter jejuni*, Isolated from Human Faeces and Groundwater Using PCR Method

Joseph Pagaya¹*, MUH. Nasrum Massi², Gino Valentino Limmon³ and Rosdiana Natsir⁴

¹Department of Biology, Faculty of Math and Natural Science, Pattimura University,

Ambon-Indonesia

²Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar- Indonesia

³Molecular Biology Unit, Faculty of Fishery, Pattimura University, Ambon-Indonesia ⁴Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar-Indonesia

*Corresponding author

ABSTRACT

Keywords

Campylobacter jejuni, flaA virulance genes, Faeces, Groundwater Campylobacter jejuni have been recognized as one of major causes of bacterial gastroenteritis (campylobacteriosis) in humans both in developed and developing countries. Incidence of campylobacteriosis in developing countries is estimated to be approximately 1% of the population and the number of cases increased annually in most countries. It was also reported that in Indonesia about 3.6 percent of 21.763 diarrhea cases cause by Campylobacter jejuni is higher than that of Vibrio cholerae non-O1 and Salmonella paratyphi A. The aim of this study was determine flaA genes of Campylobacter jeujuni isolated from faeces and groundwater to determine whether there is a factor of virulent isolates. Sixty isolates in total were tested in this study, including 44 isolates from human clinical samples (faeces), and 16 from groundwater. Out of these, 35 human faeces and 3 groundwater samples were found positive for C. jejuni. The isolates were identified on the basis of morhological, biochemical by vitek and PCR based detection of 16S rRNA and flaA virulence gene, which are reponsible for expression of adherence, invasion, and colonization in C. jejuni. The PCR detection showed, 7 isolates positive for flaA gene, 6 from faeses and 1 from groundwater. The findings on detection of virulence *flaA genes C. jejuni* from clinical cases of children and groundwater further prove the importance of infection that necessitates the need for proper preventive measures to control the infection in drinking water and household water consumption.

Introduction

Campylobacter jejuni have been recognized as one of major causes of bacterial gastroenteritis (campylobacteriosis) in humans both in developed and developing countries. Incidence of campylobacteriosis in developing countries is estimated to be

approximately 1% of the population and the number of cases increase annually in most developing countries countries. In campylobacteriosis is hyperendemic, with a high incidence rate in children around about 40-60% of the population each year (Lodge, 2007; Friedman et al., 2000). It was also reported of diarrhea due cases to Campylobacter infection in some countries, for example in the United States that 2.5 million campylobacteriosis sufferers and 124 sufferers died annually (Hu and Kopecko, 2003). In 1988, it was reported that cases of Campylobacter infection in Denmark was 3,372 cases, as many as 4,382 cases in Spain (Schmidt and Tirado, 2001). Meanwhile, a report issued by the Swedish Institute for the Infection Disease Control in 2008 revealed that in 2007 a total of 7.106 cases of Campylobacter enteritis occurred in Sweden, with 77.45 cases per 100,000 population. While in Indonesia, from 21,763 sufferers diarrhea about 3.6 percent caused by *Campylobacter jejuni* is higher than that of Vibrio cholerae non-O1 and Salmonella paratyphi A (Tjaniadi et al., 2003).

Campylobacter jejuni infection is caused by eating undercooked poultry, drinking contaminated water and the consumption raw milk (unpasteurized milk). Symptoms of the infection are diarrhea, abdominal pain, fever, headache, nausea and vomiting. Symptoms usually appear 2–5 days after the start of infection and lasts for 3-6 days (WHO, 2009). Campylobacter jejuni live commensal on some domestic and wild animals and persistent in the environment (Butzler, 2004). The main transmission pathways to humans is through ingestion or contact with contaminated food, milk or water.

Campylobacter jejuni are asaccharolytic, fastidious bacteria, and this limits the available phenotypic tests by which isolates may be differentiated (Linton *et al.*, 1997).

Identification to species level is hindered by variations in methodology and the subjective interpretation of biochemical test results. There are also isolates with atypical phenotypes. For example, the differentiation of C. jejuni from C. coli relies on the ability of C. jejuni to hydrolyze hippurate, but certain atypical C. jejuni strains fail to do so, rendering identification based on this single test unreliable. These limitations might in principle be overcome by the use of PCRbased genotypic methods. Furthermore, it would be advantageous to identify campylobacters directly in a fecal or water sample, thereby avoiding the need for culture (Roop et al., 1984; Nicholson and Patton, 1993; Linton et al., 1997)

Motility of *Campylobacter* spp. necessitates the production of flagellum, the best characterized virulence determinant of campylobacters. Flagella and flagellar motility are vital to host colonization, virulence in ferret models, secretion, and host-cell invasion (Young et al., 2007; Astorga and Alonso, 2010). The flagella of C. jejuni consists of an unsheathed polymer of flagellin subunits, which are encoded by the adjacent *flaA* and *flaB* genes. Both genes are subjected to antigenic and phase variation. Mutants of *flaA*, the primary structural gene for flagella, are unable to colonize chicks and cannot invade human intestinal epithelial cells in vitro. Adhesion and invasion are dependent on both motility and flagella expression, as C. jejuni mutants with reduced motility show reduced adherence and no invasion. This indicates while flagella are involved in that. adherence, other adhesins are involved in subsequent internalization (van Vliet and Ketley, 2001; Astorga and Alonso, 2010). The aim of this study was to determine flaAgenes of C. jejuni isolated from faeces and groundwater to determine whether there is a factor of virulent isolates.

Material and Method

Bacterial strains and growth conditions

Sixty isolates in total were tested in this study, including 44 isolates from human clinical samples (faeces), and 16 from groundwater. All isolates were incubated on Columbia blood agar base (Oxoid: CM0331B) prepared aseptically with Campylobacter Selective Preston Supplement (Oxoid: SR0117E) at 42 °C under microaerobic conditions (candle jar) for 48 h.

Preparation of DNA. Bacterial culture was transfered to a 1.5 ml microcentrifuge tube then centrifuged for 5 minutes at $300 \times g$. supernatant was discarded The then resuspended cells in 200 µl of PBS by pipette. 20 µl of Proteinase K was added then mixed by pipetting and incubated at 60°C for 5 minutes. 200 µl of GSB Buffer was added then mixed by shaking vigorously. Incubated the samples at 60°C for 5 minutes and inverted the tubes every 2 minutes. Then, 200 µl of absolute ethanol was added to the sample lysate and mixed immediately by shaking vigorously for 10 seconds. If precipitate appeared, broke it up as much as possible with a pipette.

Placed a GD Column in a 2 ml Collection Tube and transfered all of the mixtures (including any insoluble precipitate) to the GD Column. Centrifuged at 14,000 x g for 1 minute. Following centrifugation, if the mixture did not flow through the GD Column membrane, increase the centrifuge time until it passes completely. Discard the 2 ml Collection Tube containing the flowthrough then transfer the GD Column to a new 2 ml Collection Tube. Add 400 μ l of W1 Buffer to the GD Column. Centrifuge at 14,000 x g for 30 seconds then discard the flow-through. Place the GD Column back in the 2 ml Collection Tube. 600 μ l of Wash

Buffer (make sure absolute ethanol was added) was added to the GD Column and centrifuged at 14,000 x g for 30 seconds then discarded the flow-through. Placed the GD Column back in the 2 ml Collection Tube and centrifuged again for 3 minutes at 14,000 x g to dry the column matrix. Transfered the dried GD Column to a clean 1.5 ml microcentrifuge tube. Added 100 µl of pre-heated Elution Buffer, TE Buffer into the center of the column matrix. Let stand for at least 3 minutes to allow Elution Buffer, TE Buffer to be completely absorbed. Centrifuged at 14,000 x g for 30 seconds to elute the purified DNA, stored at -20 °C and used as template DNA.

PCR based confirmation and detection of *vir*ulence genes: The isolates were confirmed by PCR (polymerase chain reaction) based detection of 16SrRNA using published primers (Morris et al., 2008). The confirmed C. jejuni isolates were screened for the presence of pathogenic gene flaA. The template DNAs for PCR was extracted by using gSYNCTM DNA extraction kit (Geneaid). The reaction mixture consisted of 4 μl of bacterial lysate (DNA product), 20 μl of master mix green, 0.5 µl of of each forward and reverse PCR primer (16SrRNA and *flaA* gene) to a final volume of 25 µl.

The oligonucleotide primers used are *C. jejuni 16SrRNA* forward: 5'-TCC TAC GGG AGG CAG CAG CAG T-3' reverse: 5'-GGA CTA CCA GGG TAT CTA ATC CTG TT-3' and *flaA* gene forward: 5'-CTC CGC AGC AGA TGA TGA TGC TT-3', reverse: 5'-CCA TGG CAT AAG AGC CAC TTT GAG C-3'. The positive control was a local isolate of *Campylobacter jejuni* and *Campylobacter* gBlocksTM (Integrated DNA Technology). The reaction mixture was amplified in a T100-thermal cycler (Bio-Rad). The following PCR conditions were used: heat denaturation at 95°C for 14 min,

35 cycles with denaturation at 94°C for 15 s, annealing at 50°C for 1 min, extension at 72°C for 1 min, and a final extension at 72 °C for 10 min. The PCR product was separated by electrophoresis in 2 % agarose gel at 100 V for 40 min in Tris-acetate buffer, visualized by ethidium bromide staining, illuminated by UV-transilluminator and documented by a gel documentation apparatus (Bio-Rad). A 100 bp DNA ladder was used as a size reference for PCR assay.

Result and Discussion

In conventional culture method, numbers of 60 samples from human faeces and groundwater were analyzed by enrichment, selective plating and biochemical tests from suspected colonies and examining them for morphology, motility, gram staining and analyzed by automatic machine Vitek® 2 BioMereux with NH card. Base on vitek analyzed, a total of 59 (98,6 %) samples were determined as unidentified organisms and only one (1,4 %) were determined as C. jejuni (low detection) 38 (63.33%) out of total 60 samples screened, show the presence of C. jejuni. All the isolates are confirmed by PCR based detection of 16S rRNA gene (Fig. 1-4). Because of strong conservation of regions in the rRNA genes (5S, 16S and 23S rRNA), these genes are suitable targets for PCR based identification of Campylobacter (Rizal et al., 2010). The results indicate that 79.55% of the human faeces samples and 18.75% of groundwater samples are positive for C. jejuni. The human isolates are from patients suffering from diarhea and below the age of 5 years. The varying isolation rates of *C. jejuni* from human and chicken faecal samples have been recorded in different studies (Nadeau et al., 2002, Baserisalehi et al., 2005). Eyigor et al. (1999) also emphasized that the isolation rates may vary, depending on the sampling procedure. vear. isolation methodology, and whether the sample is fresh or frozen. In this study, examined culture isolates were stored in incubators 42° C for a long time so it is difficult to detected with conventional culturing or vitek. This is because *C. jejuni* are very sensitive to extreme environmental stress such as drought, high levels of oxygen, and others (van Vliet and Ketley, 2001; WHO, 2011).

The findings for the virulence *flaA* genes are summarized in table 1. Not all the positive C. jejuni isolates are from human faeces and groundwater have *flaA* genes (Fig. 5 and 6). the positive C.jejuni isolates from human faces have seven *flaA* genes, while on the positive from groundwater have one *flaA* gene. The findings are in agreement with earlier observations regarding the presence of flaA genes in C. jejuni species isolated from human as well as chicken (Konkel et al., 1999, Dorrell et al., 2001, Bang et al., 2003, Datta et al., 2003, Rozynek et al., 2005). The products of these genes are responsible for the expression of adherence and colonization (Nuijten et al., 2000; Ziprin et al., 2001).

The prevalence of flaA gene in both human groundwater isolates and indicates pathogenic potential since the flaA gene plays an important role in Campylobacter pathogenesis. The flagella has a three pronged approach to colonisation and adhesion in that it imparts motility, is a glycosylated adhesin and serves as the apparatus for export some virulence proteins, including the Cia (Konkel et al., 2004) and *flaC* (Song *et al.*, 2004) which are both involved in invasion.

Waterborne outbreaks of Campylobacter occur occasionally and are normally associated with faecal contamination of the water source from agricultural waste run-off, bird droppings or sewage outflow (Cook and Bolster, 2006).

Int.J.Curr.Microbiol.App.Sci (2015) 4(6): 379-387

Source	No. of samples	Gene deteced – no. of positive isolate (% positive)	
		16S rRNA	flaA
Human faeces	44	35 (79.54)	7 (20)
Groundwater	16	3 (18.75)	1 (33.33)
Total	60	38 (63.33)	8 (21.05)

Table.1 Detection of genes Campylobacter by PCR

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 1. PCR detection of 16S rRNA gene (466 bp) of *C. jejuni*. Lane 1 = Marker, Lane 2 = + control (gBlock), Lane 3 = neg. control, Lane 4 - 13 test isolates

Fig.3. PCR detection of 16S rRNA gene (466 bp) of *C. jejuni*. Lane 1 = Marker, Lane 2 = + control (gBlock), Lane 3 = neg. control, Lane 4 - 15 test isolates

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig.2. PCR detection of 16S rRNA gene (466 bp) of *C. jejuni*. Lane 1 = Marker, 2 = + control (gBlock), 3-19 = test isolates, 20 = + control (local strain).

Fig.4. PCR detection of 16S rRNA gene (466 bp) of *C. jejuni*. Lane 1 = Marker, Lane 2 = + control (gBlock), Lane 3 = neg. control, Lane 4 - 13 test isolates

Fig.5. PCR detection of *flaA* gene (1558p) of *C. jejuni*. Lane 1 = Marker, Lane 2 = + control, Lane 3 = neg. control, Lane 12, 13, 14 and 17 *flaA genes C. jejuni*

Contaminated groundwater may serve as a source of inoculation of drinking waters with *C. jejuni* or the introduction of the organism into livestock populations where groundwater is used as a source of drinking water or houshold water consumption and irrigation (Pearson *et al.*, 1993; Stanley *et al.*, 1998; Hanninen *et al.*, 2003).

The survival of *C. jejuni* in groundwater is not surprising as the environmental conditions (e.g. low redox potential, low temperatures, lack of UV exposure and desiccation) often favour its maintenance (Stanley *et al.*, 1998; Jones, 2001). Detection of *C. jejuni* in groundwater suggests that this organism does exhibit significant vertical movement in the environment (Stanley and Jones, 2003), possibly owing to electrostatic repulsion of the bacteria and negatively charged soil particles (Bolster *et al.*, 2006).

Finding virulence *flaA* genes *C. jejuni* in groundwater samples indicate the public health hazard due to this emerging water

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig.6. PCR detection of *flaA* gene (1558 bp) of *C. jejuni*. Lane 1 = Marker, Lane 2, 3, 5 *flaA* genes *C. jejuni*

borne organism in the region. The isolates show a wide variation for the presence of pathogenic genes; however, presence of virulence genes revealed the pathogenic potential of the isolates. The findings on detection of virulence flaA genes C. jejuni from clinical cases of children further prove the importance of infection that necessitates the need for proper preventive measures to control the infection in drinking water and household consumption. water Transmission of Campylobacter infection to human via the consumption of drinking water has been reported in numerous outbreak (Revez et al., 2014). The infective dose of *C.jejuni* cells is very small and it has been estimated that as few as 500 cells could illness cause human (Lodge, 2007; Khanzadi, et al., 2010). This means even very smaal number of virulence C. jejuni cells, present a potensial health hazad.

References

Astorga, A.F., Alonso, R. 2010. Campylobacter. In: Dong You Liu (Ed.), Molecular detection of foodborn pathogen. CRC Press. pp. 345–360.

- Bang, D.D., Scheutz, F., Gradel, K.O., Nielsen, E.M., Pedersen, K., Enberg, J., Gerner-Smidt, P., Handberg, K., Madsen, M. 2003. Detection of seven virulence toxin and genes of Campylobacter jejuni and Campylobacter coli isolates from different sources and cytolethal distending toxin production suggest potential diversity of pathogenic properties among isolates. Genome Lett., 2: 62–72.
- Bolster, C.H., Walker, S.L., Cook, K.L. 2006. Comparison of Escherichia coli and *Campylobacter jejuni* transport in saturated porous media. *J. Environ. Qual.*, 35: 1018–1025.
- Butzler, J.P. 2004. *Campylobacter*, from obscurity to celebrity. *Clin. Microbiol. Infect.*, 10: 868–876.
- Cook, K.L., Bolster, C.H. 2007. Survival of *Campylobacter jejuni* and *Escherichia coli* in groundwater during prolonged starvation at low temperatures. J. *Appl.Microbiol.*, 103: 573–583.
- Datta, S., Niwa, H., Itoh, K. 2003. Prevalence of 11 pathogenic genes of *Campylobacter jejuni* by PCR in strains isolated from humans, poultry meat and broiler and bovine faeces. *J. Med. Microbiol.*, 52: 345–348.
- Dorrell, N., Mangan, J.A., Laing, K.G., Hinds, J., Linton, D., AlGhusein, H., Barrell, B.G., Parkhill, J., Stoker, N.G., Karlyshev, A.V., Butcher, P.D., Wern, B.W. 2001. Whole genome comparison of *Campylobacter jejuni* human isolates using a low-cost microarray reveals extensive genetic diversity. *Genome Res.*, 11: 1706– 1715.
- Friedman, C.R., Neimann, J., Wegener, H.C., Tauxe, R.V. 2000.

Epidemiology of *Campylobacter jejuni* infections in the United States and other industrialized nations. In: I. Nachamkin & M. Blaser (Eds), *Campylobacter*, ASM Press, Washington, D.C. Pp. 121–138

- Hu, L., Kopecko, J. 2003. *Campylobacter* Species. In: Miliotis, Bier, J.W. (Ed), International handbook of foodborne pathogens. Marcel Dekker, New York. Pp. 181–198.
- Jamshidi, A., Bassami, M.R., Farkhondeh, T. 2008. Isolation and identification of *Campylobacter spp*. and *Campylobacter coli* from poultry carcasses by coventional culture method and multiplex PCR in Mashhad, Iran. *Iran. J. Verter. Res.*, 9(2): 132–137.
- Jones, K. 2001. *Campylobacters* in water, sewage and the environment. J. Appl. Microbiol. Symp. Suppl., 90: 68S– 79S.
- Khanzadi, S., Jamshidi, A., Soltaninejad,
 V., Khajenasiri, S. 2010. Isolation and identification of *Campylabacter jejuni* from bulk tank milk in Mashhad-Iran. *World Appl. Sci. J.*, 9(6): 638–643.
- Konkel, M.E., Kim, B.J., Rivera-Amill, V., Garvis, S.G. 1999. Bacterial secreted proteins are required for the internalization of *Campylobacter jejuni* into cultured mammalian cells. *Mol. Microbiol.*, 32: 691–701.
- Linton, D., Lawson, A.J., Owen, R.J., Stanley, J. 1997. PCR detection to species level and fingerprinting of *Campylobacter jejuni* and *Campylobacter coli* direct from diarrheic samples. J. Clin. Microbiol., 35(10): 2568–2572. American Society for Microbiology.
- Lodge, K. 2007. A molecular investigation of *Campylobacter jejuni* pathogenesis. School of Applied Sciences Portfolio

of Science, Engineering and Technology RMIT University.

- Morris, G.A.J., Ikumapayi, U.N., Antonio, M., Howie, S.R.C., Adegbola, R.A. 2008. A novel *Campylobacter jejuni* sequence type from a culture-negative patient in the Gambia. *Plos One Open Access*, 3(3): e1773. www.plosone.org.
- Nicholson, M.A., Patton, C.M. 1993. Application of Lior biotyping by use of genetically identified *Campylobacter* strains. J. Clin. *Microbiol.*, 31: 3348–3350.
- Nuijten, P.J., van den Berg, A.J., Formentini, I., van der Zeijst, B.A., Jacobs, A.A. 2000. DNA rearrangements in the *fla*gellin locus of *fla*A mutant of *Campylobacter jejuni* during colonization of chicken ceca. *Infect. Immun.*, 68: 7137–7140.
- Oyofo, B.A., Thornton, S.A., Burr, D.H., Trust, T.J., Pavlovskis, O.R., Guerry, P. 1992. Specific detection of *Campylobacter jejuni* and *Campylobacter coli* by usingthe polymerase chain reaction. *J. Clin. Microbiol.*, 30: 2613–2619.
- Pearson, A.D., Greenwood, M., Healing, T.D., Rollins, D., Shahamat, M., Donaldson, J., Colwell, R.R.1993.
 Colonization of broiler chikens by waterborne *Campylobacter jejuni*. *Appl. Environ. Microbiol.*, 59: 987– 996.
- Revez. J., A.K. Llarena, T. Schott, M. Kuusi, M. Hakkinen, M. L. Hänninen and M. R. R. Kivistö, 2014. Genome analysis of Campylobacter jejuni strains isolated from a waterborne outbreak. *BMC Genomic*, 15: 768. Open Access. http://www.biomedcentral.com/1471-2164/15/768.
- Rizal, A., A. Kumar and A.S. Vidyarthi, 2010. Prevalence of pathogenic genes

in *Campylobacter jejuni* isolated from poulty and human. *Int. J. Food Safety*, 12: 29–34.

- Roop, R.M., I. I, R. M. Smibert, J. L. Johnson, and N. R. Krieg, 1984. Differential characteristics of catalasepositive campylobacters correlated with DNA homology groups. *Can. J. Microbiol.*, 30: 938–951.
- Rozynek, E., K. Dzierzanowska-Fangrat, P. Jozwiak, J. Popowski, D. Korsak, and D. Dzierzanowska. 2005. Prevalence of potential virulence markers in Polish *Campylobacter jejuni* and *Campylobacter coli* isolates obtained from hospitalized children and from chicken carcasses. J. Med. Microbiol., 54: 615–619.
- Schmidt, K., Tirado, C. 2001. WHO surveillance programme for control of foodborne infections and intoxication in Europe. Seventh report 1993 1998. BGUV-FAO/WHO Collaborating Centre for Reseach and Training in Food Hygiene and Zoonoses, Berlin.
- Song, Y. C., S. Jin, H. Louie, D. Ng, R. Lau,
 Y. Zhang, R. Weerasekera, S. Al
 Rashid, L. A. Ward, S. D. Der, and V.
 L. Chan, 2004. *FlaC*, a protein of *Campylobacter jejuni* TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. *Mol. Microbiol.*, 53, 541–553.
- Stanley, K., K. Jones, 2003. Cattle and sheep farms as reservoirs of *Campylobacter. J. Appl. Microbiol.*, 94: 104S–113S.
- Stanley, K., R. Cunningham, and K. Jones, 1998. Thermophilic Campylobacter in groundwater. J. Appl. Microbiol., 85: 187–191.
- Tjaniadi, P., Lesmana, M., Subekti, D., Machpud, N., Komalarani, S., Santoso, W., Simanjuntak, C.H.,

Punjabi, N., J. R. Campbell, W. K. Alexander, H. J. Beecham III, A. L. Corwin, and B. A. Oyofo, 2003. Antimicrobial Resistance of Bacterial Pathogens Associated with Diarrheal Patients in Indonesia. *Am. J. Trop. Med. Hyg.*, 68(6): 666–670.

- Ugboma, A. N., M. D. Salihu, A. A. Magaji, M. B. Abubakar, 2013. Prevalence of Campylobacter species in groundwater in Sokoto, Sokoto state, Nigeria. doi: 10.545/vetworld.2013.285-287. Open Access. www.veterinaryworld.org
- van Vliet, A. H. M and J. M. Ketley, 2001. Pathogenesis of Enteric *Campylobacter* Infection. *Journal of Appl. Microbiol.*, 90: 458–568.
- WHO, 2009. Risk assessment of *Campylobacter* spp. in broiler chickens: Interpretative summary. Microbiological risk assessment series 11. WHO Library Cataloguing-in-Publication.
- WHO, 2011. *Campylobacter*. Fact sheets. WHO Media Centre, August, 2011.
- Wieczorek, K., J. Osek, 2010. Molecular characterization of *Campylobacter* spp. isolated from poultry faeces and carcasses in Poland. Acta Vet. Brno. 80: 019 – 027.
- Young, K. T., L. M. Davis, V. J. DiRita, 2007. *Campylobacter jejuni*: Molecular biology and pathogenesis. *Nature Rev.Microbiol.*, 5: 665–679.
- Ziprin, R. L., C. R. Young, J. A. Byrd, L. H. Stanker, M. E. Hume, S. A. Gray, B.
 J. Kim, M. E. Konkel, 2001. Role of *Campylobacter jejuni* potential *vir*ulence genes in cecal colonization. *Avian Dis.*, 45: 549–557.